
28 The Delphi Magazine Issue 36

ImageList In Depth
by David Collie

If you’ve used Delphi 3 then
you’re probably familiar with the

TImageList component that ships
with the VCL. This component is a
wrapper for the image list common
control provided with 32-bit ver-
sions of Windows. The image list is
used to manage sets of images,
either icons or bitmaps, in an effi-
cient manner. The TImageList com-
ponent is normally used in
conjunction with other compo-
nents, such as the listview or the
treeview, to provide images that
the other components can display.
At its simplest level an image list
just acts as a container for images,
but it is much more versatile than
that and in this article I’ll show you
what else it can do.

Oddities...
Before delving into anything more
complicated, I first want to cover
an unusual aspect of the image list.
The Width and Height properties,
unlike any other component, do
not specify the size of the compo-
nent since it is a non-visual compo-
nent. Instead they specify the size
of the images to be stored. For
example, setting Width and Height
to 16 specifies that all images are
16 by 16 pixels in size. The compo-
nent has a special constructor
designed to define this size, Cre-
ateSize, that takes the image width
and height as parameters. This
constructor will not be called
normally since the virtual Create
constructor is called when compo-
nents are created on a form. To use
CreateSize you have to create the
component by hand (see Listing 1).

This code creates a new image
list that can store images 16 by 16
pixels in size. If the component is
created automatically (by being
placed on a form in the form
designer) then set the Width and
Height properties in the property
inspector to define the image size.
This should be done before adding
any images to the list as changing
these properties results in the list

Procedure CreateImageList;
Begin
SmallImageList := TImageList.CreateSize (16, 16);

End;

➤ Listing 1

being cleared of all images it
contains.

Image Masks
Masks are used when the image list
contains bitmaps and are used to
make the images transparent, ie
the image’s background colour is
transparent when drawn. It is not
necessary to worry about masking
if the image list contains icons,
since an icon already contains
information about its transparent
colour. However, bitmaps do not
contain this information and the
image list needs to know how to
mask them. There are two options:
use a mask image that defines the
transparent portion of the bitmap
or define the mask colour for the
images. Using a mask image is
more involved and normally
unnecessary and won’t be covered
here. It is far simpler to use a mask
colour. This is done by setting the
BkColor property to the colour that

will act as a mask. All images will
have any region of this colour
drawn transparently. For example,
if the BkColor is clRed then any red
pixels in the image will be drawn
transparently.

Adding Images
There are several different ways of
adding images to an image list. The
simplest way is to double click the
image list component in the form
designer and use its property
editor to add the desired images
from disk files. This is the way that
most people probably use it. How-
ever, there are a few twists when
adding images this way. If a bitmap
is added that is the same height as
the image list but its width is a mul-
tiple of the image list’s, then the
property editor will offer to split it
into multiple images. For example,
if the image list’s width is 16 and
the bitmap’s width is 80 then the
property editor will split the

Procedure AddIcon (AnIcon: TIcon);
Begin
ImageList.AddIcon (AnIcon);

End;
Procedure AddBitmap (ABitmap: TBitmap);
Begin
ImageList.Add (ABitmap, nil);

End;
Procedure AddImages (AnImageList: TImageList);
Begin
ImageList.AddImages (AnImageList);

End;
Procedure FileLoad (AFileName: String);
Begin
// Requires the mask colour to be defined (red).
ImageList.FileLoad (rtBitmap, AFileName, clRed);
End;
Procedure ResourceLoad (AName: String);
Begin
ImageList.ResourceLoad (rtBitmap, AName, clRed);

End;
Procedure ResourceInstanceLoad (AName: String);
Begin
// HInstance is the global instance handle for the app.
ImageList.ResInstLoad (HInstance, rtBitmap, AName, clRed);

End;
Procedure GetResourceInstance (AName: String);
Begin
ImageList.GetInstRes (HInstance, rtBitmap, AName, 0, [lrDefaultSize],
clRed);

End;

➤ Listing 2

30 The Delphi Magazine Issue 36

bitmap into 5 images each 16 pixels
in height. This is useful when, for
example, you’ve stored all of the
images for a toolbar’s buttons in
one bitmap for convenience. Note
that this will not work if the image
list and bitmap share the same
width but have a different height.

Images can be added at runtime
as well as design-time. Here the
options are to add an image from
an existing TImage or TBitmap using
the following methods.

AddIcon adds an icon to the
image list. Add adds a bitmap and
optionally a mask to the image list.
As discussed previously, using an
image mask is too involved so the
Mask parameter can be set to nil.

AddImages takes all of the images
defined in another image list and
adds them to the image list.

The following only work when
loading bitmaps. FileLoad loads an
image from a file. This will only
load bitmaps. ResourceLoad, Res-
InstLoad and GetInstRes all load an

image from the resource section of
the program or a DLL. Examples of
all these methods are in Listing 2.

The method GetInstRes does the
real work of loading an image from
a resource. FileLoad, ResourceLoad
and ResInstLoad are all ‘helper’
methods that pass the appropriate
parameters to GetInstRes.

Drag And Drop
The image list control also allows
us to use an image it contains as a
drag cursor. This can look much
better than the standard drag
cursor. The image can be of any
type: it doesn’t have to be a cursor,
it can be either an icon or a bitmap.
Unfortunately to do this the stan-
dard drag and drop mechanism
cannot be used, ie you cannot set a
control’s DragMode property to
dmAutomatic or call the BeginDrag
method. If the standard drag and
drop mechanism is invoked whilst
using the image list’s drag and
drop methods, then the two will

conflict and you’ll get
undesirable results. This
means that there is more
work involved using an
image list for drag and
drop than there is doing
it the normal way.

To enable drag and
drop the SetDragImage
method must be called
first. This defines the
image index to display as
the drag cursor and the
image’s hot spot. The

image list’s DragCursor can then be
set which will result in the drag
cursor being a combination of the
defined cursor and the selected
image. To display the new drag
image the BeginDrag method is
called. This takes as parameters
the handle of the control which
defines the boundaries of the drag
operation, normally the parent
form, and the initial position of the
image. Because we’re not using any
of the standard drag and drop
mechanisms this code must be
called in the OnMouseDown event of
the control to be dragged (the
source). To turn off the drag image
the EndDrag method of the image
list is called in the OnMouseUp event
of the source control. When the
source is dragged the drag cursor
must be moved manually by calling
the image list’s DragMove method in
the source control’s OnMouseMove
event, specifying the X and Y coor-
dinates of the cursor’s new posi-
tion. Listing 3 shows an example of
how to string this all together. As
you can see, this is quite a lot of
work but may be worth it if you
need cursor handling above and
beyond that provided by standard
drag and drop.

Image Overlays
The last feature of the image list
that I would like to cover is the abil-
ity to draw one image overlaid
transparently onto another. Using

unit DragDropForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, ExtCtrls;

type
TMainForm = class(TForm)
DragImages: TImageList;
DragSource: TStaticText;
Target: TImage;
procedure DragSourceMouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure DragSourceMouseUp(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure DragSourceMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

private
ImageIndex: Integer;

end;
var
MainForm: TMainForm;

implementation
{$R *.DFM}
procedure TMainForm.DragSourceMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
Randomize;
ImageIndex := Random (DragImages.Count);
DragImages.SetDragImage (ImageIndex, 0, 0);

DragImages.DragCursor := crDefault;
DragImages.BeginDrag (Self.Handle, DragSource.Left + X,
DragSource.Top + Y);

end;
procedure TMainForm.DragSourceMouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
MousePos: TPoint;
TargetControl: TControl;

begin
DragImages.EndDrag;
// Find out what's under the mouse.
MousePos.X := DragSource.Left + X;
MousePos.Y := DragSource.Top + Y;
TargetControl := Self.ControlAtPos (MousePos, True);
if TargetControl = Target then begin
DragImages.GetIcon (ImageIndex, Target.Picture.Icon);

end;
end;
procedure TMainForm.DragSourceMouseMove(Sender:
TObject; Shift: TShiftState; X, Y: Integer);

begin
if DragImages.Dragging then begin
DragImages.DragMove (DragSource.Left + X,
DragSource.Top + Y);

end;
end;
end.

➤ Listing 3

➤ Figure 1: Drag n drop in operation.

August 1998 The Delphi Magazine 31

this feature you can, for example,
overlay the ‘shortcut’ image onto
another image as Windows does.
There are two methods that are
used when drawing overlaid
images. The first, Overlay, registers
an image in the list as an overlay
image. Only images registered in
this way can be drawn transpar-
ently over another. The method
takes as parameters the index of
the image to be used as an overlay
and an overlay number between 0
and 3, which is used later when
drawing the overlay to specify
which overlay image is to be used.
Once an image is registered in this
way it is then possible to draw the
overlaid image using the DrawOver-
lay method. This method draws
onto a canvas the combination of
an image in the list transparently
overlaid with another image, previ-
ously registered using the Overlay
method. Listing 4 has an example
of this which allows you to display
either the main image, the overlay
image or the combination of the
two. The code to draw the image is
in the form’s OnPaint event
because any draw operation is not
persistent. You can see the pro-
gram running in Figures 2 to 4.

So what use can we put this over-
lay ability to? I used it to create a
component, TOverlaidImageList,
that holds a number of overlay
images followed by a number of
main images (to be overlaid). At
runtime the image list creates an
overlaid image for all the combina-
tions of overlays and main images.

unit OverlayForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TMyForm = class(TForm)
ImageList: TImageList;
ImageType: TRadioGroup;
procedure FormPaint(Sender: TObject);
procedure ImageTypeClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
public
end;

var
MyForm: TMyForm;

implementation
{$R *.DFM}
const
OverlayNumber = 0;
MainImage = 0;
OverlayImage = 1;

procedure TMyForm.FormPaint(Sender: TObject);
const

itMain = 0;
itOverlay = 1;
itCombined = 2;

begin
case ImageType.ItemIndex of
itMain : ImageList.Draw (Self.Canvas, 10, 10,

MainImage);
itOverlay : ImageList.Draw (Self.Canvas, 10, 10,

OverlayImage);
itCombined: ImageList.DrawOverlay (Self.Canvas, 10, 10,

MainImage, OverlayNumber);
end;

end;
procedure TMyForm.ImageTypeClick(Sender: TObject);
begin
// Draw the requested image (actually done in OnPaint).
Invalidate;

end;
procedure TMyForm.FormCreate(Sender: TObject);
begin
// Register the overlay.
ImageList.Overlay (OverlayImage, OverlayNumber);

end;
end.

The image list can then be used by
a listview or treeview as normal
but with the added capability of
being able to display overlaid
images for each list/treeview item.
I’ve used this in my applications to
convey the state of a list item by
using a different overlay for each
state. The component itself is
quite simple. At design-time it
behaves exactly the same as a
normal image list. It does, how-
ever, have one extra property,
OverlayCount, that specifies the
number of images that are over-
lays. The first 0..OverlayCount -1
images in the list are then the
overlay images, the rest being
the main images that are going to
be overlaid later. At runtime the
component iterates through the
combination of overlay and main
images, adding a new image to
the list for each combination. For
example, if there are 2 overlay
images and 5 main images an
additional 10 images will be
added to the list. These new
images can then be referenced by
other components such as the
listview. The heart of this compo-
nent is the Loaded method. This is
called after a component has
been created and its property
values loaded from the form’s
resources. It is here that the addi-
tional images are created. The
overlaid images are actually
added to a temporary image list
to make the routine easier to
write. Once all of the overlaid
images are created they are
added from the temporary image
list to the real image list and the

➤ Listing 4

➤ From the top:
Figure 2: Main image displayed.
Figure 3: Overlay image displayed.
Figure 4: Combined image.

temporary image list is destroyed.
To create an overlaid image we use
the above technique of calling Dra-
wOverlay. However, we need a
canvas to draw the overlaid image
onto. The component creates a
temporary bitmap for just this

32 The Delphi Magazine Issue 36

purpose, ensuring that the bitmap
is of the same size as the compo-
nent. If you attempt to add an
image to the image list that is not
the same size as the image list then
you’ll get an exception (except in
the circumstances I mentioned
earlier).

The temporary bitmap is a TBit-
map object that is easy to use and
manipulate. A TIcon object cannot
be used since it does not provide a
Canvas property. Before each call
to DrawOverlay the bitmap’s con-
structor, Create, is called. This has
the effect of reinitialising the
bitmap. Calling Create on an
already constructed object is dif-
ferent to calling the constructor as
a class method, eg TBitmap.Create,
in that it doesn’t allocate memory
for the object since this has

already been done. To allow access
to overlaid images at runtime one
last property is added, Over-
laidImageIndex. This is not pub-
lished since it is only useful at
runtime and not design-time, so
runtime type information is not
required for the IDE’s object
inspector. As it is an array prop-
erty the RTTI for it is inaccessible
anyway. This property takes two
parameters, the index of an overlay
image and the index of a main
image. It then returns the index of
the image that is a combination of
the two. Passing the constant NoO-
verlay will return the main image
by itself, not overlaid with any
other image. Listing 5 shows the
component’s source code. To use
the component at runtime, assign
it to another component, for exam-
ple as the SmallImagesproperty of a
listview. Then, in code, set the
image index of the listviews using
the OverlaidImageIndex property.

unit OverlaidImageList;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs;

type
{ This image list allows you to define overlays for the
main images. The first OverlayCount images are overlaid
onto the other images. At runtime each set of images is
overlaid with the overlays. }

TOverlaidImageList = class(TImageList)
private
FOverlayCount: TOverlay;
NonOverlayCount: Integer;

protected
procedure Loaded; override;
function GetOverlayedImageIndex(ThisOverlayIndex:
Integer; ThisImageIndex: Integer): Integer;

public
property OverlayedImageIndex[OverlayIndex: Integer;
ImageIndex: Integer]: Integer
read GetOverlayedImageIndex;

published
property OverlayCount: TOverlay
read FOverlayCount write FOverlayCount;

end;
const
NoOverlay = -1;

implementation
function TOverlaidImageList.GetOverlayedImageIndex(
ThisOverlayIndex: Integer; ThisImageIndex: Integer):
Integer;

// Returns index of the image overlaid with given overlay.
begin
Assert((ThisOverlayIndex = NoOverlay) or
(ThisOverlayIndex in [0..3]),
'Overlay must be between 0 and 3.');

{ first set of images are the overlays, 2nd set not
overlaid, 3rd set with overlay[0] and so on }

Result := (NonOverlayCount * (ThisOverlayIndex + 1)) +
ThisImageIndex;

end;
procedure TOverlaidImageList.Loaded;
var

WorkList: TImageList;
ThisImage: Integer;
WorkBitmap: TBitmap;
ThisOverlay: Integer;

begin
inherited;
NonOverlayCount := Count - OverlayCount;
if not (csDesigning in ComponentState) and
(OverlayCount > 0) then begin
if OverlayCount > Count then begin
raise EListError.Create(
'Overlay count exceeds image count');

end;
WorkList :=
TImageList.CreateSize (Self.Width, Self.Height);

WorkBitmap := TBitmap.Create;
try
// Copy all non-overlaid images to a temp image list.
WorkList.Assign (Self);
// overlay each image in turn and add to working list.
for ThisOverlay := 0 to OverlayCount - 1 do begin
// Register the overlay.
Overlay (ThisOverlay, ThisOverlay);
for ThisImage := 0 to NonOverlayCount - 1 do begin
// Clear out the bitmap.
WorkBitmap.Create;
WorkBitmap.Height := Self.Height;
WorkBitmap.Width := Self.Width;
// Overlay main image with its overlay onto bitmap
DrawOverlay(WorkBitmap.Canvas, 0, 0,
OverlayCount + ThisImage, ThisOverlay);

// Add this to the working list.
WorkList.Add (WorkBitmap, nil);

end;
end;
// Now copy the overwrite me with the working images.
Assign (WorkList);

finally
WorkList.Free;
WorkBitmap.Free;

end;
end;

end;
end.

An example of this is given in
Listing 6.

Conclusion
The image list can do far more than
immediately meets the eye. How-
ever, most of its methods are not
well documented and can be tricky
to use. In this article I’ve shown
you how to use some of its ‘hidden’
abilities.

Dave Collie is a senior Delphi and
OO design consultant with
Informatica Consultancy &
Development, specialising in the
design and implementation of
large applications in an object
oriented environment. He can be
reached by email at dave@
informatica.uk.com.
Copyright 1998 David Collie

Procedure SetItemImage (Item: TListItem);
Const
Shortcut = 0;
WordDocument = 1;

Begin
Item.ImageIndex := OverlaidImageIndex[Shortcut, WordDocument];

End;

➤ Listing 6

➤ Listing 5

Which Components?
Which Tools?

Which Utilities?

Developers Review
Has The Answers

www.itecuk.com

	Oddities...
	Image Masks
	Adding Images
	Drag And Drop
	Image Overlays
	Conclusion

